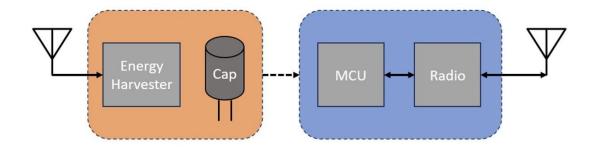
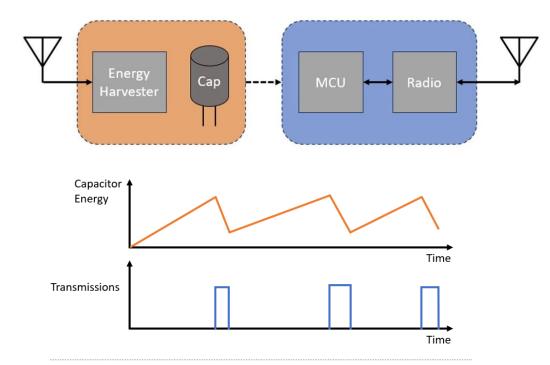
Distributed Sniffer Nodes for Batteryless Sensor Nodes (sdmay24-25)

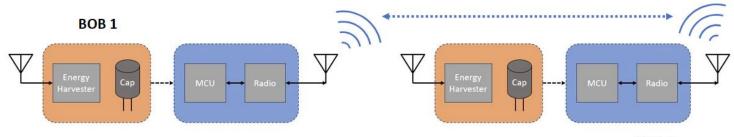
Team Lead/ Software Lead: Thomas Gaul Hardware Lead: Tori Kittleson Hardware Member: Matthew Crabb Software Member: Spencer Sutton Scribe/Software Member: Ian Hollingworth


Advisor/Client: Henry Duwe CPRE/EE 491 Fall 2023

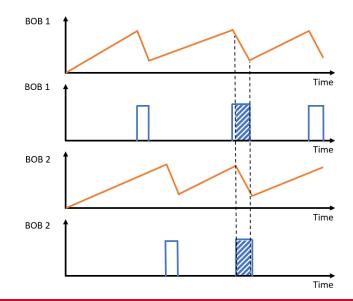
https://sdmay24-25.sd.ece.iastate.edu/ IOWA STATE UNIVERSITY

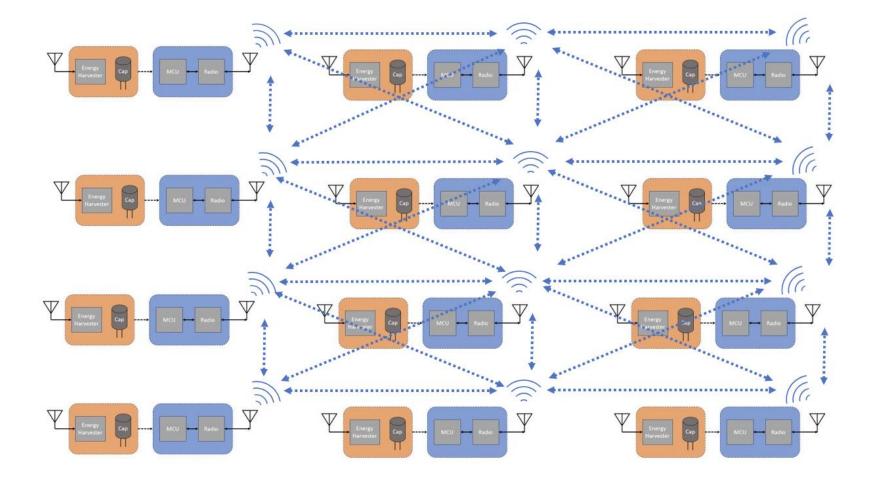
Project Overview

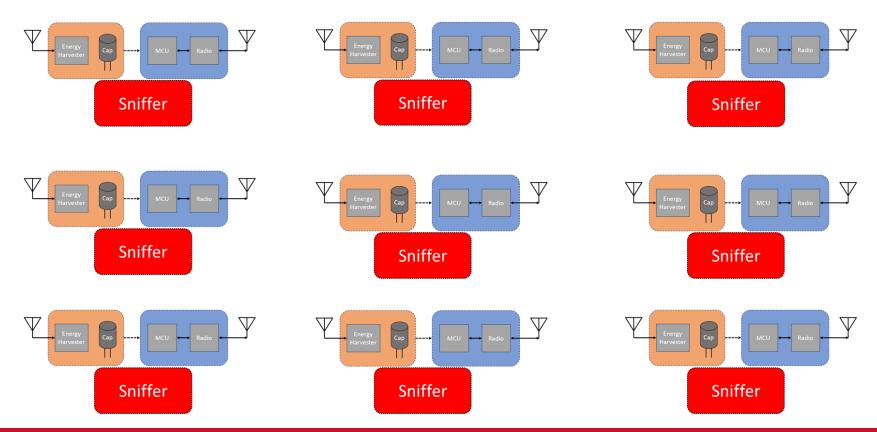

BOB Node - Batteryless sensor designed by client.


р. 9

IOWA STATE UNIVERSITY


Project Overview


IOWA STATE UNIVERSITY



IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

Goal: Create testbed for researchers to use for the batteryless nodes they are developing.

IOWA STATE UNIVERSITY

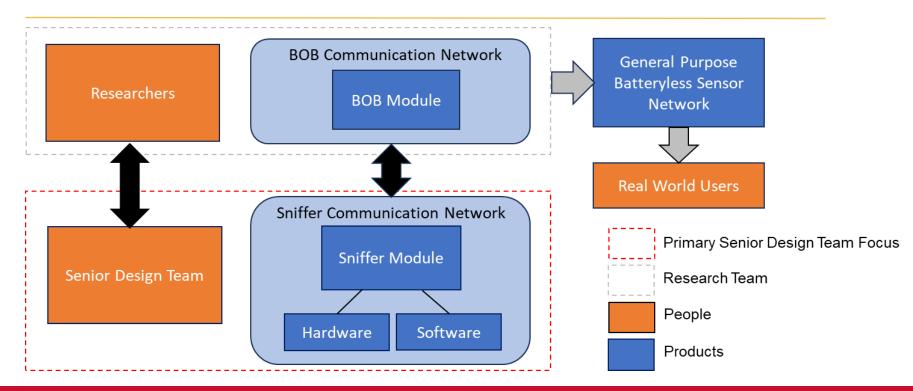
Use Cases

Scenario Node Tests

- Single node tests
- Multi-node and single lab testing (goal of 9)
- Large scale testing (goal of 100 1000)

Users

- Dr. Duwe's research group
- Universities, companies, hobbyists through open-source nature


Potential Impact

- Forest fire detection in national parks
- Factory condition monitoring
- Weather monitoring and recording

p. 11

IOWA STATE UNIVERSITY

Visual Sketch

IOWA STATE UNIVERSITY

Requirements

Functional

- 9 BOB/Sniffer pairs
- Sink Sniffer Node with continuous power
- Host system to organize and store Sniffer logs
- Sniffer Nodes powered for one week
- Sniffer Nodes inflict minimal effects on BOB Nodes
- BOB Nodes electrically isolated from one another
- Modular stack of BOB and Sniffer custom boards

Non-functional

- Scalable for a potential larger (100+ node) design
- Documentation
- Mechanical durability of system

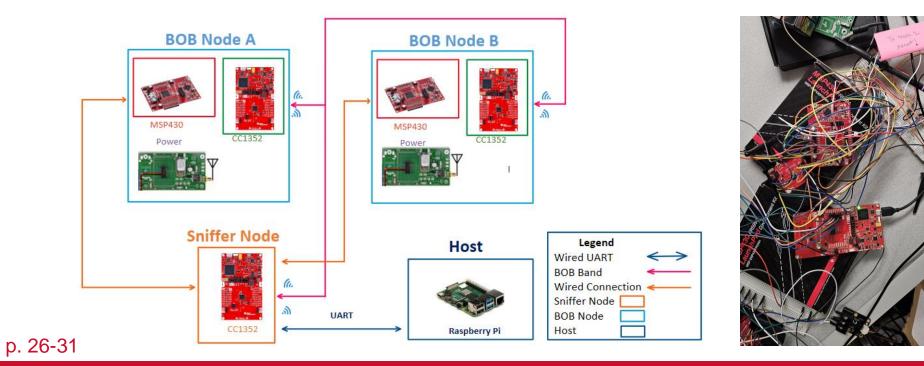
p. 9-10

IOWA STATE UNIVERSITY

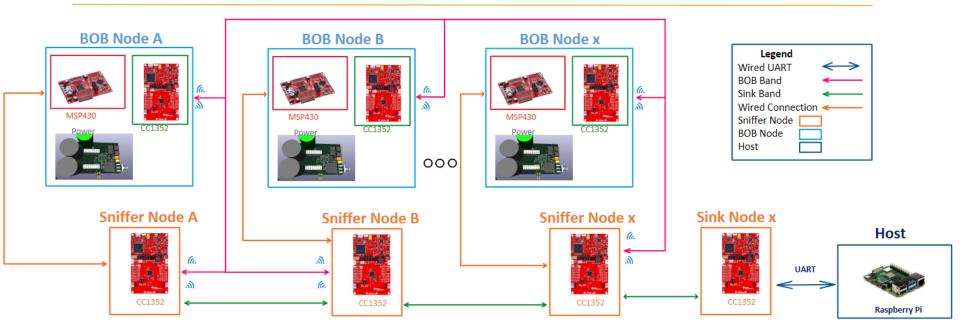
Requirements

Engineering Standards

- UART communication protocol to connect Sink Sniffer Node to Host (RS-232)
- Radio communication standards (TI Proprietary 2.4 GHz)
- Bluetooth[™] (IEEE 802.15.1)
- PCB design Standards

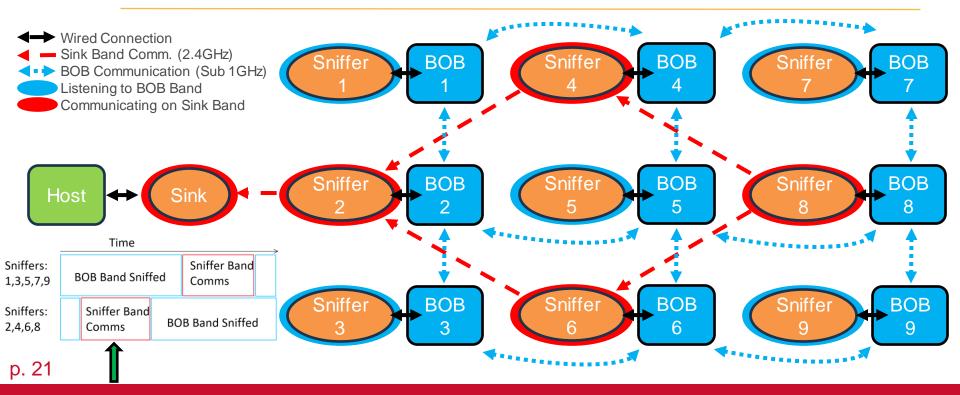

Deliverables

- Breakout Board Hardware
- MSP Simplified Hardware
- Sniffer Node Hardware
- Sniffer Node Software
- Open-Source Documentation
- Mechanically Sound System

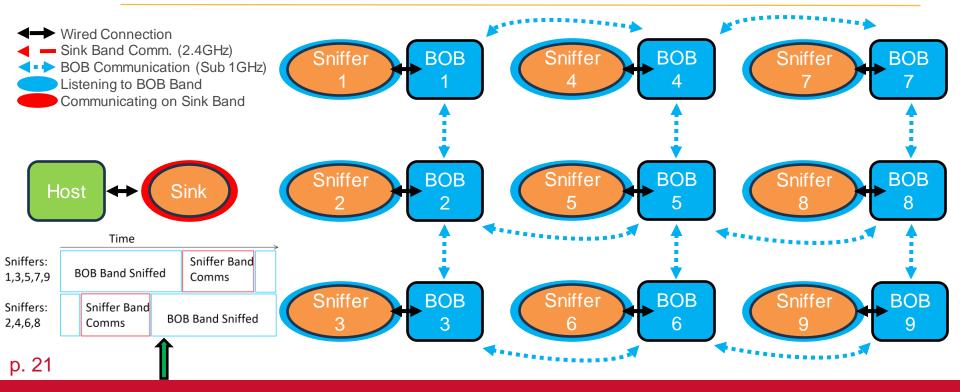

p. 9-11

IOWA STATE UNIVERSITY

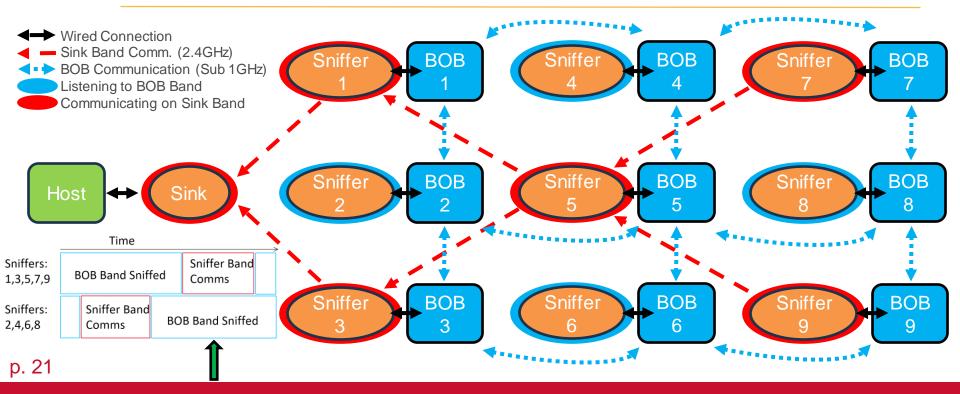
Current Design

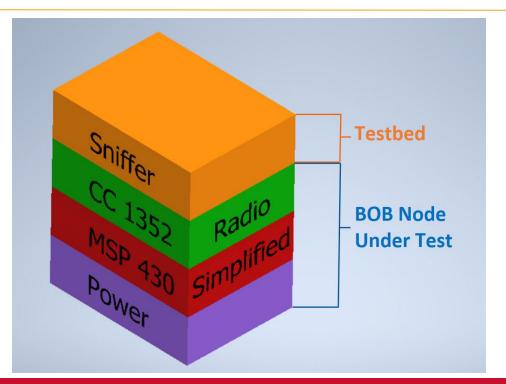


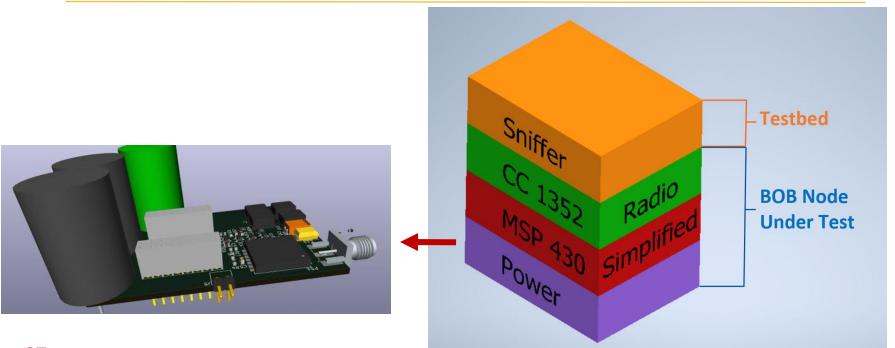
IOWA STATE UNIVERSITY



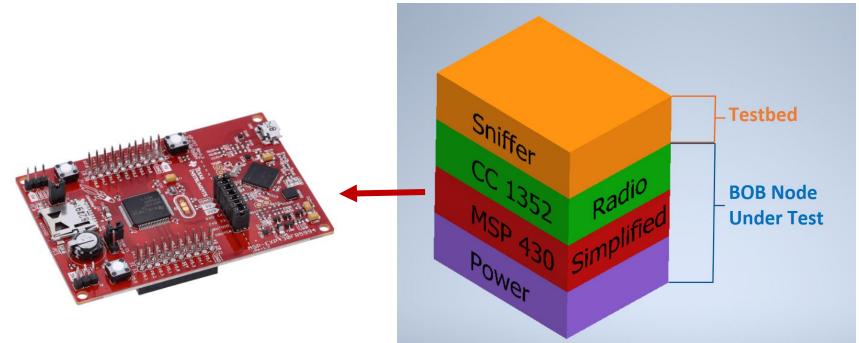
p. 24-36


IOWA STATE UNIVERSITY

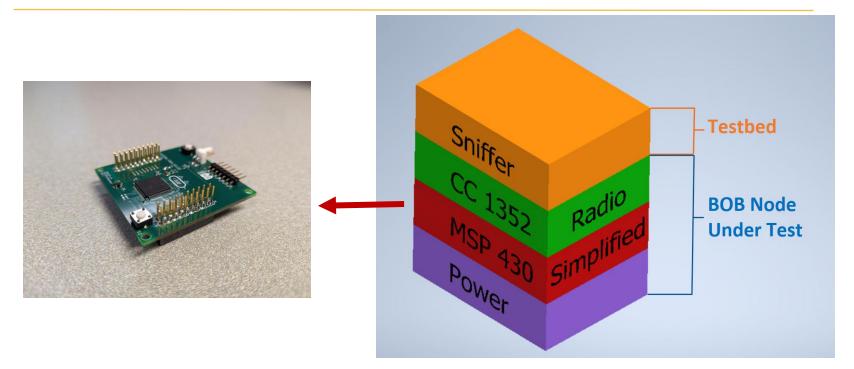

IOWA STATE UNIVERSITY


IOWA STATE UNIVERSITY

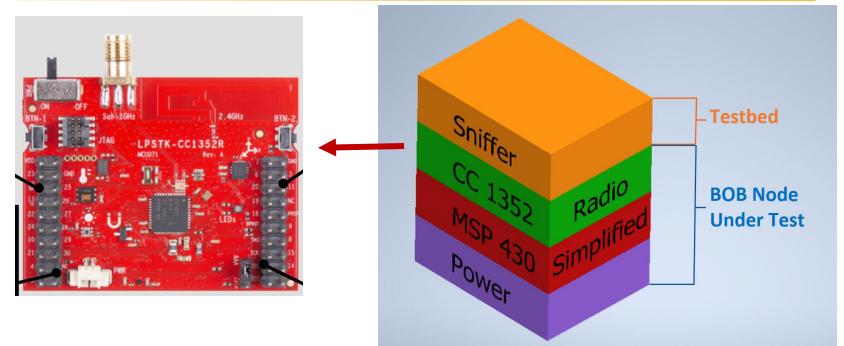
IOWA STATE UNIVERSITY



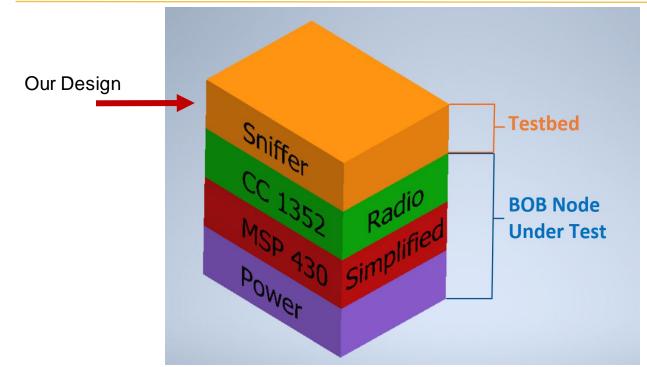
IOWA STATE UNIVERSITY


p. 27

IOWA STATE UNIVERSITY


p. 27

IOWA STATE UNIVERSITY


p. 27

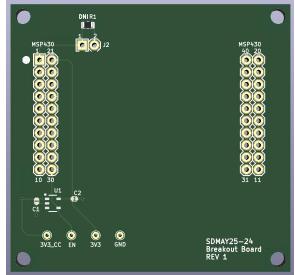
IOWA STATE UNIVERSITY

p. 27


IOWA STATE UNIVERSITY

p. 27

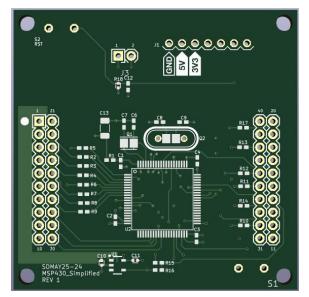
IOWA STATE UNIVERSITY


Conceptual Design Diagram - Hardware

IOWA STATE UNIVERSITY

Breakout Board was designed to eliminate unknowns with the MSP_Simplified

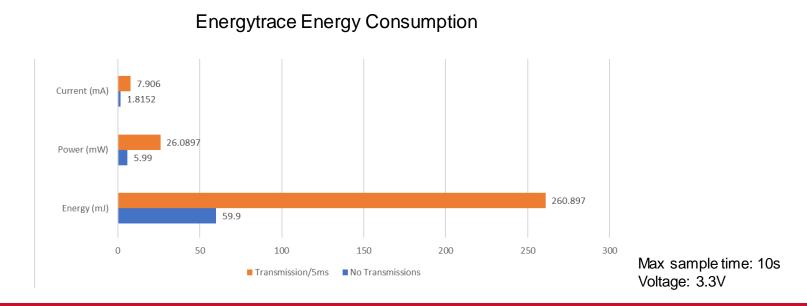
- Load Switch
- Connector spacing
- First order with KiCAD
- Grad Student testing



Breakout Board Revision 1

p. 35, 66-71

IOWA STATE UNIVERSITY


- Removed Debugger Logic
- DNP for unused GPIOS
- Load Switch for CC1352 rail
- PCB Dimensions

MSP_Simplified Revision 1

p. 35-36,72-79

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

p. 36-37

Rechargeable LIPO Battery

- 2.8 V 3.6 V typical output
- Using voltages, required capacity ~ 820 1060 mAh
- Range of capacities available with many in needed range
- Charger on board sniffer

Pros:

- High capacity
- Sustainable
- No replacement of batt.
- High voltage supplied

Cons:

- Electronics complexity
- Mechanical complexity
- Design time

p. 41-42

IOWA STATE UNIVERSITY

Prototype Implementations - Software Timing

Parameter Given:

One 8-byte packet every 5ms

Array Based Queue:

Holds up to 2500 10 bytes packets

Test Observations:

12ms to send a max packet length 128 bytes

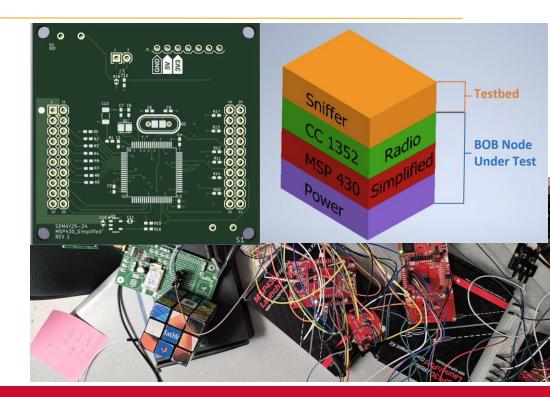
Band Swapping:

~30ms to swap bands

Time(ms)	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
Odd	2	10	15	20	23	50	00		From BOB t	o Sink Band	d	00	05	70	15	00	05	50	55	100
Odd(Bytes)	8	16	24	32	40	48	56	64	64	64	64	64	64	64			0	0	0	0
Even		From Sink	to BOB Ban	d																
Even(Bytes)	0	0	0	0	0	0	0	8	16	24	32	40	48	56	64	72	80	88	96	104
Time(ms)	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	190	195	200
Odd		From Sink	to BOB Ban	ıd																
Odd(Bytes)	0							8	16	24	32	40	48	56	64	72	80	88	96	104
Even									From BOB t	o Sink Band	d									
Even(Bytes)	112	120	128	136	144	152	160	168	168	168	168	168	168	168			40			0

p. 21-30

IOWA STATE UNIVERSITY


Design Complexity

Design Elements Discussed:

- PCB design
- PCB stacked integration
- Software Timing
- EnergyTrace Battery Consumption

Design Iterations:

- PCB Breakout Board
- Tester battery system
- Sniffer Communications

p. 20

IOWA STATE UNIVERSITY

Project Plan – Schedule/Milestones

							CF	PRE/EE	492						
	Week	Week	Week	Week	Week	Week	Week	Week							
Project	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16
Develop Sniffer schematic															
Develop Sniffer layout															
Hardware Stack Physical Design															
Test Functionality of Sniffer Hardware							_								
Integrate New Hardware into Test Setup										_					
Hardware Documentation															
Implement Checkerboard Communication		_													
Develop Sniffer Bob Physical Data Collection			_												
Develop Sniffer Bob Radio Data Collection															
Develop Host PC Data Logging						_									
Software Documentation															
Full System Testing															
Produce 10 functioning BOB and sniffer pairs.															

p. 16

IOWA STATE UNIVERSITY

Risk Mitigation

- Band-switching non-functional
- Custom hardware non-functional
- Hardware orders delayed
- Hardware becomes damaged

- -> Swap to two CC1352 implementation
- -> Return to using off-the-shelf boards
- -> Order ASAP
- -> Have extras on-hand

p. 17

IOWA STATE UNIVERSITY

Test Plan – Unit Testing

Hardware

- Visual inspection, benchtop tools, units of test code
- Test plans generated for each board
- Isolation, power supply, programmability, communication, specific functionality

Software

- Test activation of all interrupts
- Time-based interrupts
- Receive based interrupts
- · Queue loading and emptying

p. 44-52

IOWA STATE UNIVERSITY

Test Plan – Interface/Integration

Hardware

- Inputs and outputs (antenna, headers) with test code and probing as needed
- Test isolation and power supply with all PCBs connected

Software

- UART
- Radio
- GPIO
- Interrupt Integration

p. 53-56

IOWA STATE UNIVERSITY

Test Plan – System Level

Elements to test: Functionality, Accuracy, Usability

Mock BOB Emulation

- 1. Ensure system functions and network communicates Functionality
- 2. Compare against old system with identical tests Accuracy

Implementation Testing

- 1. Test system with research team's setup Functional
- 2. Hand off system with documentation to researchers Usability

Thank you!

Hardware Cost Estimates

Cost for	Single Board									
Item #	Designator	Manufacturer	Mfg Part #	Description / Value	Package	Supplier	Link	Qty	Cost	Total Cost
1	U1	GLF Integrated Power	GLF1111	Power Switch/Driver P-Channel 2A	SOT-23-5L	DigiKey	https://www.d	1	0.33	0.33
2	C1, C2	Samsung Electro-Mechanics	CL05A104KA5NNNC	CAP CER 0.1UF 25V X5R 0402	0402	DigiKey	https://www.d	2	0.01	0.02
3	J1	Samtec Inc.	SSW-110-03-G-D	CONN RCPT 20POS 0.1 GOLD PCB	~	DigiKey	https://www.d	2	3.89	7.78
4	J2	Molex	22122024	TH, Right Angle 2 position 0.100" (2.54mm)	-	DigiKey	https://www.d	1	0.77	0.77
5	R1	Stackpole Electronics	RMCF0805ZT0R00	RES 0 OHM JUMPER 1/8W 0805	0805	DigiKey	https://www.d	1	0.018	0.018
6	-	-	-	Board Fabrication	77	JLCPCB	-	1	3.892	3.892
								Total Cost		12.48

Cost Per Breakout Board

Cost	for single board										
ltem #	Designator	Manufacturer	Mfg Part #	Description / Value	Package	Supplier	Link	Qty	Cost	Total Cost	
1	U1	GLF Integrated Power	GLF1111	Power Switch/Driver P-Channel 2A	SOT-23-5L	DigiKey	https://www	1	0.33	0.33	
2	C1, C2, C3, C4, C10, C11	TDK Corporation	C1005X5R1A104M050B	CAP CER 0.1UF 10V X5R 0402	0402	DigiKey	C1005X5R1/	6	0.021	0.126	
3	J2	Samtec Inc.	SSW-110-03-G-D	CONN RCPT 20POS 0.1 GOLD PCB		DigiKey	SSW-110-03	2	3.89	7.78	
4	J3	Molex	22122024	TH, Right Angle 2 position 0.100" (2.54mm)	-	DigiKey	https://www	1	0.64	0.64	
5	C6, C7	TDK Corporation	C1005C0G1H220J050BA	CAP CER 22PF 50V COG 0402	0402	DigiKey	C1005C0G1H	2	0.047	0.094	
6	C12	TDK Corporation	C1005X7R1H102K050BA	CAP CER 1000PF 50V X7R 0402	0402	DigiKey	C1005X7R1H	1	0.051	0.051	
7	C13	Murata Electronics	GRM155R61A106ME110	CAP CER 10UF 10V X5R 0402	0402	DigiKey	GRM155R61/	1	0.091	0.091	
8	J1	Sullins Connector Solution	PRPC007SBAN-M71RC	CONN HEADER R/A 7POS 2.54MM	-	DigiKey	PRPC007SB/	1	0.191	0.191	
9	Q1	EPSON	FC-135R 32.7680KA-A0	CRYSTAL 32.7680KHZ 12.5PF SMD	-	DigiKey	FC-135R 33	1	0.7	0.7	
10	R1, R2, R3, R4, R5, R6, R	YAGEO	RC0402JR-070RL	RES 0 OHM JUMPER 1/16W 0402	0402	DigiKey	RC0402.JR-0	17	0.0045	0.0765	
11	R18	YAGEO	RC0402FR-0747KL	RES 47K OHM 1% 1/16W 0402	0402	DigiKey	RC0402FR-0	1	0.015	0.015	
12	U2	Texas Instruments	MSP430FR5994IPN	IC MCU 16BIT 256KB FRAM 80LQFP	-	Mouser	MSP430FR59	1	11.27	11.27	
13	Q2	DNP									
14	-	Würth Elektronik	60900213421	JUMPER W/TEST PNT 1X2PINS 2.54MM	-	DigiKey	6090021342	1	0.31	0.31	
15	\$1,\$2	E-Switch	TL59NF160Q	SWITCH TACTILE SPST-NO 0.05A 12V	-	DigiKey	TL59NF1600	2	0.284	0.568	
16	J2 (trying another comp	Samtec Inc.	SSW-110-23-G-D	CONN RCPT 20POS 0.1 GOLD PCB	-	DigiKey	SSW-110-23	0	5.71	0	
17	-	-	-	PCB Fabrication	-	JLCPCB	-	1	4.96	4.96	
								Total C	ost	27.2025	

Approximate Cost Per Board							
Breakout Board ~\$13							
MSP Simplified	~\$28						

Cost Per MSP Simplified Single Board Cost

IOWA STATE UNIVERSITY

Literature Study

•"Experimental Study of Lifecycle Management Protocols for Batteryless Intermittent Communication"[2]

•"Toward a Shared Sense of Time for a Network of Batteryless, Intermittentlypowered Nodes"[3]

•"Reliable Timekeeping for Intermittent Computing"[4]

Stack Pinouts

SD)	Table 1						Table 2			
			1/O (m mean from the meth							
Data Received	P5.0	DIO22	I	Powered ON	P7.7		DI025	DIO28		0
Transmit Request	P5.1	DIO3	0	Event Gen	P7.4		D1026	DI029		I.
Transmit Done	P5.2	DIO24	I.	Testbed Reset	P7.5		DIO27	DI030		Ē
SPI Master	P5.3	DIO19	0	Easylink Tx		DI025	D1024	DIO21		
Ready				Event drop	P7.6		D109	DIO8		0
SPI Slave Ready	P5.4	DIO7	1	Reset	P7.3				Reset	E.
FRAM Written	P5.5	DIO11	0							
Power radio	PJ.4									
SPI MOSI	P6.4	DIO9		Note on	and the last of the second		harry and		See for	
SPI MISO	P6.5	DIO8			rrently in ou nodes. I/O					
SPI CLK	P6.6	DIO10		map400	10000.20	Code need			op 100 I	av or e
SPI SS	P6.7	DIO20	0							

Figure 12: Plan to Create Extra NC Pins on the CC1352R Development Board

IOWA STATE UNIVERSITY

Stack Pinouts

MSP Boar	d Pinout							
Pin #	Func		Func	Pin #	Func	Pin #	Func	
1	3V3 to CC	21	3V3	40	P5.4	20	GND	
2	GPIO	22	GND	39	GPIO	19	P5.1	
3	GPIO	23	NC	38	P6.7	18	P5.5	
4	GPIO	24	GPIO	37	P3.5	17	GPIO/EN	
5	P5.0	25	GPIO	36	GPIO	16	NC	
6	P5.2	26	GPIO	35	GPIO	15	P6.4	
7	P6.6 (SPI)	27	GPIO	34	RST_MSP	14	P6.5	
8	P1.0	28	P7.3	33	P1.1	13	P1.6	
9	P7.4	29	P7.5	32	P1.7	12	P2.6	
10	P7.6	30	P7.7	31	P2.5	11	GPIO	

Figure 14: MSP Simplified Pinout

IOWA STATE UNIVERSITY

Stack Pinouts

Harvester	Board P	inout					
Pin #	Func	Pin #	Func	Pin #	Func	Pin #	Func
1	NC	21	3V3	40	P5.4	20	GND
2		22	GND	39		19	P5.1
3		23	NC	38	P6.7	18	P5.5
4		24		37	P3.5	17	
5	P5.0	25		36		16	NC
6	P5.2	26		35		15	P6.4
7	P6.6	27		34		14	P6.5
8	P1.0	28	P7.3	33	P1.1	13	P1.6
9	P7.4	29	P7.5	32	P1.7	12	P2.6
10	P7.6	30	P7.7	31	P2.5	11	

Figure 15: Power Harvester Pinout

IOWA STATE UNIVERSITY

LIPO Cost Estimate (Slightly Outdated)

Item	Cost per Item	Quantity	Total Cost
LIPO	\$5.00	10	\$50.00
Battery Mount	\$3.00	10	\$30.00
Protection/Management ICs	\$0.50	10	\$5.00
Charger ICs and parts	\$1.00	10	\$10.00
Charger PCB	\$15.00	1	\$15.00

Costper board: \$11.00

Updated cost per board (no charging board): \$9.5

IOWA STATE UNIVERSITY

Time Skew Analysis

CC1352 clock was ran with constant time reporting, compared to real-time clock

Skew ended up > .005%, .01% between any given 2 nodes

Two nodes skewing in opposite directions: take 50 seconds to skew by 5 ms

Prototype Implementations - ????

No Transmit	Min	Max	Mean
Power (mW)	4.6707	7.5945	5.9900
Current (mA)	1.4154	2.3014	1.8152

Transmit every 5ms	Min	Max	Mean
Power (mW)	4.6707	7.5945	5.9900
Current (mA)	1.4154	2.3014	1.8152

 $P_{avg} = 0.5(5.99) + 0.5(26.09) = 16.04 mW$

$$E_{wk} = P_{avg}(7)(24)(60)(60) = 9.701 kJ$$

p. 37-38

IOWA STATE UNIVERSITY

Prototype Implementations - ????

No Transmit	Min	Мах	Mean
Power (mW)	4.6707	7.5945	5.9900
Current (mA)	1.4154	2.3014	1.8152

 $capacity - needed = (0.5(I_{normal}) + 0.5(I_{trans,5ms}))(7)(24)$

capacity - needed = ((0.5)(1.8152) + (0.5)(7.9060))(7)(24) = 816.581mAh

Transmit every 5ms	Min	Мах	Mean
Power (mW)	4.6707	7.5945	5.9900
Current (mA)	1.4154	2.3014	1.8152

$$capacity-needed = (\frac{P_{avg}}{V_{supplied}})(7)(24) = \frac{2695}{V_{supplied}}mAh$$

+10% buffer

p. 37-38

IOWA STATE UNIVERSITY

References

[1] "CC13xx/CC26xx Hardware Configuration and PCB Design Considerations." Accessed: Dec. 04, 2023. [Online]. Available:

https://www.ti.com/lit/an/swra640g/swra640g.pdf?ts=1701669788758&ref_url=https%253A%252F%252Fwww.google.com%252F

[2] V. Deep et al., "Experimental Study of Lifecycle Management Protocols for Batteryless Intermittent Communication," 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS), Denver, CO, USA, 2021, pp. 355-363, doi: 10.1109/MASS52906.2021.00052.

[3] V. Deep, M. L. Wymore, D. Qiao and H. Duwe, "Toward a Shared Sense of Time for a Network of Batteryless, Intermittently-powered Nodes," 2022 IEEE International Performance, Computing, and Communications Conference (IPCCC), Austin, TX, USA, 2022, pp. 138-146, doi: 10.1109/IPCCC55026.2022.9894317.

[4] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Przemysław Pawełczak, and Josiah Hester. 2020. Reliable Timekeeping for Intermittent Computing. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '20). Association for Computing Machinery, New York, NY, USA, 53–67. https://doi.org/10.1145/3373376.3378464

IOWA STATE UNIVERSITY